SELF-SIMILAR PLANE MOTIONS OF A HEAT-CONDUCTING GAS
HEATED BY RADIATION

V. M. Krol'

Processes occurring in a substance subjected to radiation from optical quantum generators have re-
cently attracted considerable attention from researchers. Of considerable importance are thermodynamic
processes. In fact, since the absorption coefficient depends on temperature and density, motion, accom-
panied by temperature and density variation, materially affects transmissivity and rate of heating. The
pattern of motion is very complex, even in one-dimensional (plane) problems, particularly in vapors having
generated shock waves propagating from the region of energy release. Their range and effects in these
processes vary with the intensity of the incident radiation flux and the initial density of the substance.

At high vapor temperatures, considerably exceeding the sublimation temperature Tg of the sub-
stance (at which the internal energy per unit of mass is greater than the heat of evaporation Qg and the
vapor density p is appreciably lower than the density pj of the solid body), the problem can be simplified
by assuming

Ts=Qs=0v po=o (pp=1/py=0). (0 1)

_In the region of multiple and full ionization, the absorption coefficient ky of optical radiation of ion-
ized vapors can usually be described by a power function of the pressure p and the specific volume v,
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{for a fully ionized gas @=-5/2 and b=-3/2).

The heating process of a perfect nonheat-conducting gas and gas motion were considered in [1-3] on
assumptions (0.1) and (0.2). The heating of a gas adjoining a vacuum results in an increase of pressure p,
and its consequent scatter. Decrease of the absorption coefficient kq with decreasing density and increasing
temperature T produces a deeper penetration of radiation into matteér. The heating and motion of an ab-
solutely cold infinitely dense gas is a self-similar problem. Tt was considered in approximation in [3].

Here a detailed analysis is made of the ordinary differential-equation system defining the self-similar
motion (2-5), and results of numerical integration are given (8) for: the distribution of parameters of the
maximum temperature Ty, attained during heating; the pressure py at the body surface resulting from the
scatter of vapors; the velocity u; of the gas boundary. The two latter parameters can be most conveniently
used for the indirect determination of attained temperature.

As shown by Nemchinov, heating and rarefaction waves may also occur when the forward front of the
vapor-heating wave does not coincide with the evaporation front, i.e., as if the ionized vapor layer had
been generated prior to the considered interaction phase. This often takes place under laboratory condi-
tions in experimental determination of the effect of the OQG (optical quantum generator) on a solid-body
surface, e.g., when a "gigantic impulse" is preceded by a prolonged '"phone" of continuous radiation of a
less powerful flux.
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In such problems it is necessary to consider the motion of gas forward of the heating wave front.
We assume, for simplicity, that the temperature and the rate of motion of vapors are small in comparison
with those of the initial impulse and that the initial vapor pressure is the same throughout. A heating wave,
whose dimension {of the order of 1/p kq) increases owing to the decrease of ky with increasing tempera-
ture, propagates during the first phase of radiation heating of the gas which is virtually stationary and its
density has not yet been altered [1, 2]. Heating increases gas pressure and, when the gas is contiguous
to a vacuum, results in gas dispersion. Initially, the rarefaction wave occupies a small part of the heated
region, and the light flux q in it does not appreciably vary in comparison with the incident flux q.

The presence of a rarefaction wave has virtually no effect on the nearly stationary gas forward of its
front. This phase was considered in [2]. After the rarefaction wave has moved through a distance com-
parable to the dimensions of the whole heated region, the decrease of the absorption coefficient k,, con-
sequent on the decrease of density p, which leads to increased radiation penetration, becomes important,
and a self-consistent rarefaction and heating wave sets in [3].

The reaction force accompanying gas dispersion generates a shock wave which propagates in the sub-
gtance. Since in this problem the shock-wave motion vitiates, generally speaking, its self-similarity, the
results relative to the shock-wave formation stage cited in [3] had to be obtained by the approximate-dif-
ference method. The shock wave becomes subsequently detached from the heated zone, so that the self-
similar solution {3], obtained without taking into consideration the shock wave, can be used.

Ag shown in this paper, the problem will be self-similar for finite initial density (p;< «) of the heated
substance and for the shock wave taken into account, if the light flux variation is a power function of time,
such that the characteristic gas density is constant {q~t*2 for a=—5/2 and b=—3/2). This problem is
considered in detail in § 6 and 7.

The self-similar solution considered defines the processes of heating and gas motion from the very
beginning, hence, the consecutive changes of phase, in which individual processes are unessential, do not
appear in it.

The characteristic density of dispersed matter varies with the radiation flux (or the initial density).
This makes it possible to trace the effect of parameter variation on the solution transition for density close
to initial to the limit solution for a density considerably lower than the initial, on the distribution of param-
eters, and on shock wave amplitude and position. The derived solution is, in itself of interest in the de-
termination of parameters for plasma heated by an optical quantum generator when, - during the initial phase
of impulse, the radiation flux increases.

In the problems considered above, thermal conductivity was not taken into account.

It follows from [4, 5] that at sufficiently high temperatures the effect of electron thermal conductivity
becomes appreciable. The problem of heat-conducting gas motion with a nonlinear thermal-conductivity
coefficient was considered in [6-8] but without taking into account the heat added by radiation.

In this paper self-similar motions are considered with these two factors also taken into account.

The self-similarity condition implies that for kq~p3/é the thermal conductivity k;~p? (p is the pres-
sure). This dependence kc(p) is close to the true one in fully ionized plasma (kf ~p5 %Y. Hence the solu-
tionderivedin §7 can be used for approximately assessing the thermal-conductivity effect.

Because of the formal generality of problems considered here, the analysis of the set of problems
{8 2-5) with and without taking into account thermal conductivity is carried out concurrently.

1. For a perfect gas with constant adiabatic exponent the equations of motion, continuity, energy,
and of transport of light and heat fluxes are of the form

du op dr ou op | Ov a(t+q)
T =0 T Ve Py U
3 (pr - 9 (pr oq
f=—k 8(m2) = — Koot c;;l) T em T kqq = — Kqpq. (1.1)
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Here u is the velocity; v is the specific volume; p is the pressure; q and 1 are, respectively, the
light and heat fluxes;t is the time; m is the Lagrangian mass coordinate; k. and kq are, respectively, the
thermal conductivity and the absorption coefficient; Kr and K, are numerical coefficients.

For a fully ionized plasma the exponents are: a=—5/2, b=-3/2, ¢=5/2, and d=3/2.

At the initial instant of time t=0 the gas in the half-space m=0 is assumed to be cold and stationary
u:p:()7 v =1 fort =0, (1 2)

At t= 0 radiation q impinges onthe gas, aheat flux f penetrates its boundary, and the gas is set in
motion by a piston whose velocity u (or the pressure p exercised by it on the gas) is specified. The related
boundary conditions of the problem are defined by three functions

g(0,0,  £(0,1, u (0, f) r 2, (). 1.3)

Equations (1.1)~(1.3) will be self-similar, if conditions

q(0, ) =qot™®*,  u(0, ) = ut'*  (or p(0, )=put™"
FO, ) =fo %% om0 =v, k=142 c=1Yy—b (1.4)

are satisfied.

When vy=0 (the limit case of heating a dense medium), the problem becomes self-similar, under
conditions less rigid than (1.4), with respect to the light and heat fluxes

F(O, £y = fot?, q(0, £) = qot! (¢ —1s an arbitrary number). 1.5

Thus, at the piston, the heat flux must be proportional to the incident radiation flux. For a thermally
insulated piston (f,=0) this constraint is removed.

Tn what follows (§1-7), the motions will be considered on the assumption that (1.4) is satisfied. We
introduce self-similar variables V, P, U, Q, F, and x defined by

v(m,t)= vV (2), p(m,t)= R GmIR g2 IR Py
u (m’ t) — ~1/ kUgHb—a)/kK;”kU (.‘II),
q (m, t) . t—s/ky(()2—3a+a)/kK;3/kQ (x),

f(m, t) — t—-3/ kvg+1+(s,r2-za+2ab) / kaKTI(H%) / kF (.’ll),

= mi P R T (1.6)
= ! ;
‘and by substituting these into (1.1), obtain a system of self-similar equations
b A F uv , U
oF' = (y—1) QV°P* + 2PV |k + ra (VP + YPV'),
U = —raV’', Q' =—QV'P’, &=P—r2,
re=20/k, o=1(7—1)KKp"", a.m
In the absence of heat conduction (kf=0) the system of equations is of the form
V= {1 — y)QV“P” — 2PV /Kl ra —UV/Ek}/S,
U = — raV’, P=—r22V L U/Ek, 1.8)

Q = — Qvepd, 8 = yP — riV.
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2. Tt follows from the initial and the boundary conditions (1.2) and (1.3) that the number (6) of
boundary conditions exceeds the number (5) of equations. For (1.7) these boundary conditions can be
written in the form

Q=0Q, P=P, (ox U=U), F=F, foz=0 U=PpP=0,
V=1 for z==oc, (2.1)

For x=0 the condition F=F, does not apply to Egs. (1.8). To solve the stated boundary-value prob-
lem and satisfy the "redundant" boundary condition, it is necessary to introduce a certain free parameter.
Generally the latter can be either the self-similar coordinate x; or, with a continuous solution, the jump
[p'1ofone of the derivatives.

Integration of Egs. (1.7) can be carried out from x=0 to X=X, by selecting the three free parameters
U0) {or P(0)), V(0), and x, to satisfy the last three of conditions (1.9). Such a method would, however, be
too laborious, since it necessitates the determination of three unknown parameters for obtaining a single
solution. Integration from x=x; to x=0 is more effective. In this case any of the intermediate solutions
will be a solution of the input problem with boundary parameters at point x=0, which, however, may differ
from the required Py, @, and F,. The search for a solution for a priori specified Py, Q, and Fy will
provide solutions for the whole range of these parameters, and the computation of equations would provide
additional useful information on the kind of motions considered here.

3. We shall prove that continuous solutions of this problem are not possible. By virtue of the boun-
dary conditions (2,1) the sign of function & (x) =P —r’x*V changes in the interval (0, ). We denote by x
the point at which 6 (x)=0, and add subscripts p to all parameters at that point. Let us assume that this
point is not a singular one, i.e.,

EFy+ U VEtPL =0 for o, =(P,/V,)" (3.1)

In its neighborhood functions V, P, U, @, and F are (to within terms of a higher order of smallness)
of the form

V=Vp,+v, P=P,—r%%, U=Up—rzpw

Q= Qp— QV, P (x — 2p), F =Fp + 12y (YPp — P2V p)0, (3.2)

Substituting (3.2) into the first of Egs. (1.7) and, again, neglecting terms of a higher order of small-
ness, we obtain

di1
do  kF,+UVEWPC

Ve = Z?Zx‘;Ppchd T e (3.3)
The following relationships
dz 4%y
—= = A0 |xew, = 0, 5= = A; =0,
dv x=xp 1 xp dx? x:xp 1 (3. 4>

mean that the variable x and the function v have extrema at point x,, i.e., function v(x) exists only on one
side of x=x,. Tt follows from this that when there are no nodal-type singular points in the interval (0, x,)
the solution will be discontinuous.

A similar reasoning, with only slight changes, proves the absence of continuous solutions which do
not pass through a singular point within the interval (0, x3), also in the case of Eqs. (1.8) (kf=0). We then
have rx,=t/Pp/Vp) 1y,

4. Therelationships at discontinuities at point x=x, can be obtained directly fromthe self-similar equa-
tions {1.7) by integrating these from x; —~Ax to x; + Ax and passing to limit for Ax—~0. After simple trans-
formations, we obtain formulas similar to those in [6]
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V, =P,/ Pa? Py=PV:/Vy, Q= Q
Uy, =Uy +raz, Vy —Va),
Fy=F, + (y — 1) r8a3(V% —V%) / 20. 4.1)

The same operation applied to Egs. (1.8) yields

Va=Valy—1) /(¢ +14) +2v P/ (v + 1) r’z?, Q= Q4
Py = Py + rfa? (Vy, — V), Uy = Uy +rz, (Vi — V). 4.2)

Subscripts 1 and 2 in (4.1) and (4.2) denote parameters to the left and right of point x,, respectively.
We note that in both cases § undergoes a change of its sign when passing through the discontinuity

8, = — 6,.
! : (4.3)
This ensures a stepwise transition of 6 (x) from the region 6> 0 at x<x, to region 6<0 at x> x;, as
dictated by the boundary conditions (1.9), thus avoiding point xp at which 0=0.

Let us prove the impossibility of existence of more than one discontinuity in the solution, if it does
not pass through point x,. To do this we rewrite (4.1) and (4.2) for specific volumes in the form

Vo= Vi 8,/ rm?  for k0

Vo= Vi 28, /(y + 1) rPm?  for k=0, (4.4)
expressing 6; in terms of Py and V;

8, == P, — riz?V, for k;5=0,
8, = YPy— r2z?V,  for k=0, 4.5)

Let us assume that two discontinuities exist at points x=x, and x=x; when x;<x;. According to (2.1)
84(x;) >0, hence, at point x, we have, in accordance with (4.4), a compression jump V;>Vy. Point x; will
be reached for 64(x;) <0 (in accordance with (4.3)). We will, consequently, have at point x3 a rarefaction
jump V,<Vy, which violates the second law of thermodynamies.

A definite relation exists between the parameters in a solution passing through the singular point x,
(vanishing of the numerator in the expressions for V'in (1.7) and (1.8)), and this cancels one free param-
eter. When the singular point x, is not a saddle, there must necessarily exist one more discontinuity.
However, the analysis of variation of the numerator in the expression for V' in (1.8) at point x,, with vary-
ing free parameter x;, carried out by a qualitative examination of integral-curve behavior of (1.8) and of
obtained numerical results, has shown that in the region bounded by negative values the variation of this
parameter is monotonic. The assumption of existence of solutions passing through the singular point xp
and satisfying the boundary conditions (1.9) is thus shown to be unfounded, although we have no strict proof
of this.

5. Let us consider now the singular points of Eqs. (1.7) and (1.8). As shown in §4, function 6(x)
does not vanish in the interval (0, x;); hence, singularities can only appear at points x=0 or x=x; of the
interval boundaries.

For P,;>0 Eq. (1.7) does not have a singularity at point x=0, while Eqgs. (1.8) allow at this point a
relationship clearly showing that point x=0 is singular. To find the latter, we write the nonself-similar
energy equation from (1.1) for m=0 (with kf=0)

0(0, ) 2L 4 1p 0, nEGD = (r— O K= (0, H P (0, (0, 1), (5.1)

substitute in it the expressions given in (1.6) for p, v, and q, and take into consideration that at point
m=0 we have x=0.
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After trivial reductions Eq. (5.1) becomes readily integrable. As a result we obtain

k(y—1) Qo= —2Vi Py, (5.2)

Reverting to Eqs. (1.8), we ascertain that point x=0 is singular. The solution in the neighborhood of
this point is of the "node" kind, and, within terms of higher order of smallness, is of the form

v 2PUYLE L [TV (2057 — 27 — 1)
=Vo+ 2P, (2 — 1) — 2b7 P,

U=U,—rz(V —Vy), P =P, Uslk, Q= Qy (1 =V Pz, (5.3)

x"{_lAlml(G_l)lbe

where A is an arbitrary constant.

In dispersion into vacuum (Py=0) point x=0for Egs. (1.7) and (1.8) is always a singular point ofthe node
kind. The solution of Eqs. (1.8) in the neighborhood of this singular point is, within terms of higher order
of smallness, of the form

1 (1 —1) Qo (Uo/ B)*'2"* ]”“‘“’
V= |4 — R '

U=Ug+raV(l —b)/(b—a), P=Usmlk,

O

where A is an arbitrary constant.

The nature of the singular point x=0 (at P;=0) is the same for (1.7) and (1.8) when the exponent d< 0.
The case of Q=0 and d> 0 was considered in [7]. Analysis of the singular peint x=0 for arbitrary a, b, c,
and d is made difficult by the great number of possible variations.

System (1.8) has a singularity at the terminal point x=x; at which U=P=@=0 and V=V;. The only
solution issuing from this point is in its neighborhood, within terms of higher order of smallness, of the
form

P = [—WW@ (x, — 2], V=V —P/rz?
U=Plre, Q=azrViPl(y—1), @z,b0). (5.5)

In the presence of heat conduction (ks=0) it is also possible to speak of a singularity at a certain point
x=xq at which U=P=Q=F=0 and V=V;. In the neighborhood of this point the solution, which is also of the
form (5.5), is to be supplemented by the expression for the heat flux which, for @=-5/2 and b=—3/2, is
of the form

F=3,(x, — 2. (5.6)

However, since (unlike the case of k¢=0) we have at our disposal only two free parameters xy and x,
{when integrating equations from x=x; to x=0), the input problem (§1) cannot be solved for any set of Py, @,
and Fy specified for x=0.

When solving the input problem numerically it is expedient to make use of the fact that, depending on
the relation between Py, Q. and Fy, there exists a terminal point x; such that for x= x; QEI<F(x) {or F(x)
«<Q(x)). We can then assume in approximation that in the neighborhood of this point Q{x) =0 (or F(x)=0),
and proceed from the singular point x;, using the appropriate power formulas and taking as the third free
parameter (apart fromthe coordinates of the singular point x; and of x, of the strongdiscontinuity) point x4 at
which Q(x3) =¢ (or, respectively, F(x;)=¢), where e << F(x;) (or e << Q(x3).

6. Light or heat fluxes of sufficiently high intensity reaching a gas generate patterns of motion in
which the variation of the specific volume V(x) relative to V(xy in the interval (x;, xy) and of the interval
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(0, xy) relative to (0, xy can be neglected;i.e., it is possible to consider the heated gas as stationary
throughout the interval (0, x;. The exact analytical solution of this problem was derived in {1, 2] for
absorption of a light flux with nonlinear absorption coefficient. Similar patterns exist, also, when the
light flux is absorbed by a heat~conducting gas. For V=1 the self-similar equations (1.7) are of the form

rap = (r—1)Q' — 2L — K, (P EE), @ =—P Q. 6.1)

When ¢==b, (6.1) admits particular solutions of the form

- —~1/b
L T (6.2)
PP 2P, KP"’"] b
- IF= ©:9)

In spite of their very particular form. solutions (6.2) give a good general picture of the situation
arising in the presence of heat conduction —the increased light flux Q) necessary for obtaining the maximum
of temperature P (here V=1).

In the case considered this dependence can be written in the form

, 2Py Py
Qo (K;)= A + BK; (A:—- k(T"_D . B=v7 ) 6.4)

In the absence of heat conduction (kf:O), functions (6.2) are exact solutions (see, e.g., [1, 2]) of the
self-similar input problem, and provide a simple expression for the flux Q) necessary for obtaining maxi-
mum temperature Py

2Py
QO(PO):(1__T)(1+21,) . 6.5)

For a fully ionized plasma (b==3/2 and v=5/2) from (6.5) we have
Qo= 3/,P5". (6.6)

Numerical caleulations carried out for the region Q> 10 (V(xy =1) haveyieldedthe same result, thus
confirming the existence of a wide range of values of Q; in which gas heating is defined with a considerable
degree of accuracy by simple relationships (6.2) when kr=0.

The other limit mode, opposite to that described above, occurs in the input problem when
V., =0 for Q, = const, Py = const, Fy = const. 6.7)
Here the transformation formulas (6,6) must be used in the form

— qﬂt—s.‘kQ’ U= qgans&/nv,
p= q((,l_“’a)mK};”"t_Q" kP, U = q((]1+b—a) ,'nK}l/nt——UhU’
5 ( diob 1,5—2a--2ab ) _ 2ch (@dnkts—-2adeed 3
i e k
f=KK} . £ g » t *F
7= mt—Eb/kq(()aa—b)/n K?II n’ n o= 2 o 3(.1 + b, (6 .8)

A solution of the stated boundary value ﬁ(roblem exists for Vi=0 and is an analog of the self-similar
solution for time-dependent flux q(0, t) ~t=3/%X [3].
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Self-similar profiles of this solution are shown in Fig. 1 for P;=0.18, @;=6.65, and ks=0. The ex-
tension of the high pressure region to x== is explained by the fact that in the mass the speed of sound

em = (YP / V)" = oo for V — 0.

The respective self-similar profiles for V;< 1 obviously do not differ greatly from those for V{=0;
however, owing to the finite speed of sound c,,, when V>0, the pressure P>0 does not "penetrate” point
x=, but vanishes at the terminal point x;.

Typical for the transition (6.7) to limit are the following relationships:
z 20, #—> o0 for V30, 6 9)

In the interval (Xv’ Xy), the solution of such self-similarproblems can be approximately given in the
form

P(zy=Py, V(@)=V, U=0Q=0
for zp <2< 7, (6.10)

omitting at point x, the solution of Egs. (1.8) with initial conditions

P=p, V=V, U=Q0=c<1

for == zp. (6.11)

Here P, and x; are the two free parameters (instead of xy and x,), with which the two left-hand
boundary conditions in (6.7) can be satisfied.

Because of the closeness of the solution for V;<<1 to the limit mode at V=0, it is possible to define
the relation between the shock-wave coordinate x, and V4

Vi= (v + 1) Pmj2rz2, (6.12)

Here P, is the maximum pressure in the limit problem at V;=0.

7. Analysis of the above modes and the results of calculations on a computer for intermediate modes
leads to the conclusion that the solutions of the boundary-value problem stated in § 1 can be found in the
class of functions satisfying the relationships at the shock wave, with a single discontinuity.

Let us consider the set of solutions of (1.8)-(1.9) (omitting heat conduction) with boundary conditions
Qp=const, Py=const, and 0=V =, Modes close tothe limits (V;<1and V;>>1) were describedin§6. The
self-similar profiles of intermediate modes (0 < V < =) are of the same pattern, consisting of two contin-
uous curves along segments [0, X,] and [x;, X;] with a transition jump from one to another at point x,, as
defined by (4.2). With increasing V; point x, is shifted towards x=0, the shock wave amplitude diminishes,
and the length of segment [x;, x4] increases, With decreasing V; the coordinate x, of the strong discontin-
uity and the shock-wave amplitude increase, while the length of segment [x,, x;] vanishes.

The similarity between the heat waves TVI and TVII in [6], and the modes close to the limits V==
and V=0 can be readily seen.

The difference between these is that in the first the gas is heated by a heat flux, while in the second
by a light flux; furthermore, in the latter the ordinary speed of sound is to be taken into account instead
of the isothermic.

The self-similar profiles of one of the intermediate solutions are shown in Fig. 2 for Q;=3.01,
Py=0.014, and Vy=1. The recalculation for Q;=1 yields: Py=0,0062, P, =0.62, (PV);5, = 0.45 and
V1=1. 31.

The piston pressure P(0)=P; is the second parameter. Along with Vit definesthe patternof integral
curves of Egs. (1.8, Its increase results in a shift of the strong discontinuity, i.e., an increase of its
self-similar coordinate x, and that of pressure P and velocity U throughout the interval (0, x).

In conventional (adiabatic) gasdynamics the motion behind a shock wave does not affect the motion
in front of it. However, in the presence of a light flux, perturbations are transmitted across the shock
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wave. It should be noted that, as shown by numerical calculations,
there exists for any mode at fixed V; a pressure Py, such that the varia-
\V tion of the piston pressure Py in the interval (0, Py has virtually no

effect on the motion behind the shock wave. It is this aspect which
makes it extremely difficult, when integrating Eqs. (1.8) from x=x3

to x=0, to obtain the specified reasonably small pressure Py.
In the presence of heat conduction, supplied heat flux Fyisdeter-

mined by the behavior of integral curves of Eqs. (1.7) as well as the
parameters Qj, Py, and V;. The case of Q=0 was considered in [6, 7].
The combined effect of fluxes Qg and F, does not materially affect the
quantitative motion pattern considered here and in [6, 7]. The presence
oy of heat conduction results in the smoothing of temperatures, particularly
; \ strongly evidenced by shock-wave isothermicity (see (4¢.1)). The com-
4 bined effect of light and heat fluxes is shown for one of the modes in
Fig. 8 for o=1, @Qy=12, Vixgp=1, ¢=2, and d=—1.

1.5

a/1

The dependence of the dimensionless maximum pressure P, 5

0.5 and temperature (PV)y,. on the dimensionless specific volume V; is

shown in a logarithmic scale in Fig. 4 for dispersion into a vacuum

7Y (Py=0) of a nonheat-conducting gas (ky=0) with plasma coefficient kg

and Q=1. From these curves it is possible to determine at any moment

0 T o of time t t.he ma.tximum pressure pmax(t) a.nc} ?he "ten'lp.erature" (PV)max
() for a given light flux q(0, t)=q4t®/2 and initial specific volume v,

)

Fig. 1
Pmax ()= tq:,/‘K;/“ Praxs
(P”)max ()= t‘?:)/zK:z/‘ (PVaxs (7.1)
where P,y and (PV), . are functions of parameter

) !
= vog K

From the results shown in Fig. 1, recalculated for Qy=1, we obtain Py, ~0.69 and (PV)y5x #0.44
for V<1, while for V;>1 from (6.6) we have

Po= (2/3)’/s VI’/E’ (PV)pax = (2/3)’/5V1"/a )

8. Let us consider a light flux q(0, t)=q; constant with respect to time, striking a matter of infinite
density (v(m, 0)=0). For the discharge of a nonheat-conducting gas into vacuum the initial and the boundary
conditions for (1.1) are

BuA
u=v=p=0 fort=0,

1=m p=0 form=0 >0 1)

The introduction of self-similar variables U, V, P, Q, and x by

e e R ()
»= 3/ q;(2b+1) /CK;?’/C V(z),
p= /e q((’2a—1)]/c_Ké/cP (@),
7=q0 (z), z= mt(b—3a)/cq5<a+b)/c K;Z/c, (8.2)

where ¢=3a~b—2, reduces (1.1) and {(8.1) to the following system

relU/= Uct — P!, raV' =3V /c+4 U’
re (VP' + yPV') = (3y — 1) PV — (y — ) ¢’

Q = —QVan, r=(b— 3u>c—1 (8 -3)

366



1.5 T 1.5 T
v | «\\F;//gy {
| S~
, Ly 4/ ™~
/ f 4

U3 i =
} 7 }
Ty : :
I l

2.5 N 2.5

2 \ Q/1 :
|

] ' /100

g / I < — 4 S
a5 { ! 7 YA
| |
¥ ' /100 l
’ i
25 ' vy '
Fig. 2 Fig. 3
with boundary conditions
PO)=0, Q(O)=1, V=0=U=0 for z= 2. (8.4)

The two boundary points x=0 and x=x; are singular points of (8.3).

When inequalities a<b< 0 are satisfied in the vicinity of a point x=0 of the node kind, the solution can
be expressed, to within terms of higher order of smallness, in the form

12

I

(r—1) (1 —a) @Uy [ )*1 Qs oL/ 1)
=D — (67— e—rT(1—a) +as [

P:gco—%’ U:U0+{r(b—l)b—j‘(ll——a)/c}mv’
. , 3 s
¢ :Q“[‘_@g)bwbﬂva (”bTilfz_ﬂ =t a)(ibfszga = ®.5)

where A is an arbitrary constant.

In the neighborhood of the singular point x=x;, at which U=V=Q=0 and P=P,, when the inequalities
r<0 and a<0 are satisfied, the solution can be presented, to within terms of higher order of smallness, in
the form

V= [aP* (z — z)]V?, P =P — a2V,

U= ragV, Q= ‘yerPlV/ (1 — 7). (8 6)

Boundary-value problem (8.3)-(8.4) may be solved by integrating Egs.

(8.3) from x=0 to x=x; with the use of expansion (8.5), and selecting the free

- J 7 2z  parameters A and U; so as to satisfy conditions Uy=Q=0 for V=0. The other
N\ . (pV)LHV method — integration of Eqs. (8.3) from x=x; to x=0, proceeding with (8.6) from
T‘g{” the singular point xj, and with parameter Py selected so as to satisfy condition

N

P(0)=0 —was used in the derivation of results presented here.

' \Lg\p’"“r The self-similar profiles shown in Figs. 5 and 6 were calculated for
2 @=-5/2, b=—3/2, and y=5/3.
Fig. 4 The coordinate of the singular point x; (the self-similar coordinate of

the "vaporized" mass), the pressure P; (at the "solid body surface")
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TABLE 1 TABLE 2
¥ /s s *s Y s s o5
o 0.630 | . 0.543 | 0.425 @ 0.907 | 0.817 | 0.688
Py 0.637 | 0.517 | 0.367 Py 0.695 | 0.574 | 0.416
U | —3.38 | —2.9 | —1.40 U@ | —2.83 | —2.41 | —1.85
Ty 0.286 | 0.249 | 0.107 By 0.371 | 0.320 |  0.246
(PV)m| 0.542| 0.488 | 0.423 (PV)m| 0.423 | 0.364 | 0.277
Py 0.209 | 0.175 | 0.098 P 0.240 | 0.193 | 0.130
Ve 259 | 2.79 | 4.29 Ven 1.77 1,89 | 2.2
O 0.849 | 0.859 | 0.972 Qm 0.831 | 0.853 | 0.883
Unp | —1.10 | —1.02 | —1.13 Upm | —0.961 | —0.909 | —0.832

at that point, the coordinate x,, at which "temperature” PV attains its maximum, and the values of all
variables at that point, as well as the dispersion velocity of particles bordering on vacuum U(0) are given
in Table 1 for a=—5/2 b=-3/2, and y=5/3, 7/5, and 6/5, respectively.

In Table2 the same magnitudes are given for ¢=—3/2 and b=—1/ (values typical for regions of mul-
tiple ionization [2]).

The dependence of maximum pressure py, and maximum temperature {pv)y, on time, on the numeri-
cal coefficient K. and on the intensity of the incident flux qy, in the heating of an infinitely dense medium
{(vy=0) with plasma coefficient kp and v =5/3 is defined by

Pm (8) = 0637 g Pk,

(P0)u (1) = 0.542¢ 4 g K7, (8.7

The author wishes to express his thanks to I. V. Nemchinov for suggesting the subject and for his
valuable advice and discussion.
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